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Introduction
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" left front | To investigate the effects of changing the P,1,D - gains
" on the accuracy and the latency of the quadcopter.
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To investigate the different stability effects of a rates
controller and an angles controller.

g:% Accuracy: the degree to which the result of the

angle of the quadcopter makes to the horizontal
.’ vector conforms with the setpoint, O

Visually observe the effects of
tuning the Proportional Integral
Derivative (PID) controller.

Quadcopters are mechanically
® simpler than helicopters and
more versatile than fixed-wings.
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Figure 4: Accelerometer measuring 3 angles to determine tilt

Relating the acceleration in the roll,
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I: sums up all the previous error terms, allowing any residual error
fo be accounted for, eliminating steady-state errors. Figure 7: A block diagram showing the data processing from input to output Figure 8: A block diagram showing the data processing from input to output
in a rates controller in an angles controller
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Results and Discussion

/ Comparison of P-Gain on the stability of quadcopter \ 4 Comparison of I-Gain on the stability of quadcopter A
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